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Abstract 

This paper identifies two conspicuous regions in the North Atlantic by clustering, These regions show 

strongly above-average and strongly below-average warming, respectively, and might therefore be 

useful for the monitoring of changes in the strength of the AMOC. The first region, which lies in the 

north of the subpolar gyre, has so far defied global warming. However, the results of a seasonal analysis 

indicate a recent rise in temperature in the months from July to October. If this upward trend continues, 

it will mask the large AMO fluctuations, which  contribute significantly to the variance and auto-

correlation of northern temperature time series. The common use of increases in these second 

moments as early-warning signs for an imminent AMOC collapse will then be deprived of its basis. 

Moreover, empirical evidence suggests that past increases were erratic and not steady, which makes it 

fundamentally impossible to predict the time of a possible AMOC collapse by extrapolation.  

Keywords: Global warming, AMOC collapse, early-warning signs, variance, autocorrelation.  

1. Introduction 

The circulation in the North Atlantic is caused by differences in temperature and salinity. The Gulf 

Stream, which is a part of this circulation, transports a large amount of heat from the south to the north.  

A weakening of the Gulf Stream might therefore entail a cooling in the north and a warming in the south 

or, in the presence of global warming, an accelerated warming in the south and a delayed warming in 

the north. Carrying out simulations with a global climate model, Latif et al. (2004) indeed found a 

relationship in the low-frequency range between the North Atlantic thermohaline circulation and the 

sea surface temperature (SST) in a specific northern region (40°–60°N and 50°–10°W; see the dotted 

region in Figure 1). Therefore, they proposed a simple method to monitor future changes in this 

circulation, which consists of just observing sea surface temperatures in that particular region or 

(because of global warming) rather temperature differences between more northern and more 

southern regions. Fittingly, Rahmstorf et al. (2015) defined a proxy for the Atlantic Meridional 

Overturning Current (AMOC) as the difference between the mean temperature in a certain northern 

region, which they called “subpolar gyre” and which contains the 17 grid points represented by circles 

with black borders in Figure 1, and the Northern Hemisphere mean surface temperature. The 

significance of such a proxy stems from the fact that direct measurements of the AMOC are only 

available for relatively short periods (Smeed et al., 2014), which makes it impossible to distinguish 

between multidecadal oscillations and longer-term trends. With the help of simulations, Caesar et al. 
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(2018) identified a characteristic SST fingerprint of an AMOC slowdown, which consists of a cooling in 

the subpolar gyre region and a warming along the US northeast coast and is most pronounced during 

winter and spring. However, they based their AMOC proxy only on the former region because of too 

much variability in the latter region. It is defined as the mean SST in the subpolar gyre from November 

to May minus the global mean SST from November to May. 

The subpolar gyre is characterized by a weaker increase in the temperature compared to other 

regions. In the presence of long cycles with large amplitudes, the widely used linear trend model is 

unsuitable for the quantification of this increase. It will inevitably confuse a slight increase with a 

decrease if the series starts at the maximum of a cycle or ends at the minimum of a cycle. The respective 

study period obviously plays a major role in this context. For example, Latif et al. (2004), Rahmstorf et 

al. (2015), and Caesar et al. (2018) studied the periods 1870–1998, 1901–2000, and 1870–2016, 

respectively. In the next section, a more sophisticated investigation will be carried out. Both the long-

term trend and various cycles will be taken into account for the identification of clusters with similar 

temperature trends. The suitability of the cluster classification for the purpose of assessing and 

forecasting the AMOC strength will be examined in Section 3. The discussion in Section 4 addresses 

seasonal and bivariate aspects and concludes.  
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Figure 1: Identification of nine clusters (purple, blue, turquoise, green, yellow green, yellow, red, orange, 

brown) of grid points with similar temperature trends. The gray points do not form an independent 

cluster. They were left out because of missing values after December 1873.  

2. Clustering 
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For the statistical analysis, I used the free statistical software R (R Core Team, 2022) and the global 

land and ocean dataset HadCRUT5 Analysis (from https://crudata.uea.ac.uk/cru/data/temperature/), 

which combines land [CRUTEM5] and marine [HadSST4] temperature anomalies on a 5° by 5° grid with 

greater geographical coverage via statistical infilling (Morice et al., 2021). This dataset has been 

developed by the Climatic Research Unit (University of East Anglia and NCAS) jointly with the Hadley 

Centre (UK Met Office). The temperatures are expressed as anomalies from the base period 1961-1990. 

The average temperature for each calendar month in the base period is regarded as normal. The 

complete series of anomalies are shown for all 90 grid points in Figure 2. 

   

https://crudata.uea.ac.uk/cru/data/temperature/
https://www.uea.ac.uk/
https://www.ncas.ac.uk/
https://www.metoffice.gov.uk/
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Figure 2: Individual series of anomalies at grid points 1-45 in the first column and 46-90 in the second 

column. Colors indicate cluster affiliations. The gray series have missing values after December 1873.  

The nine clusters of grid points shown in Figure 1 were obtained by first smoothing  the individual 

series of anomalies from January 1874 to  July 2023 with the help of the Hodrick-Prescott (HP) filter 

(using the R function hpfilter of the package mFilter) and then performing k-means clustering on the 

smoothed series (choosing the Hartigan–Wong algorithm for the R function kmeans). The HP trend 𝐹𝑡 of 

the series 𝑋1, . . . , 𝑋𝑛 is obtained by minimization of 

                                 ∑ (𝑋𝑡 − 𝐹𝑡)2𝑛
𝑡=1 + 𝛬 ∑ ((𝐹𝑡 − 𝐹𝑡−1) − (𝐹𝑡−1 − 𝐹𝑡−2))2𝑛

𝑡=3 ,                                     (1) 

where  the tuning parameter 𝛬 determines the degree of smoothing. For the series of anomalies, the 

value 𝛬 = 107 was used. For each cluster, the individual HP trends are shown in Figure 3. Obviously, 

the agreement within a cluster is very strong. The smooth lines shown in Figure 4 represent clusterwise 

averages.  
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Figure 3: PoIynomial temperature trends for each grid point grouped by clusters  (a: purple cluster, b: 

blue cluster, c: turquoise cluster, d: green cluster, e: yellow green cluster, f: yellow cluster, g: red cluster, 

h: orange cluster, i: brown cluster)  
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Figure 4: Clusterwise temperature trends (a: purple cluster, b: blue cluster, c: turquoise cluster, d: green 

cluster, e: yellow green cluster, f: yellow cluster, g: red cluster, h: orange cluster, i: brown cluster)  

The small red cluster (with only three grid points) along the US northeast coast and the larger 

turquoise cluster (with ten grid points) below Greenland show strongly above-average and strongly 

below-average warming, respectively, and are therefore the natural candidates to indicate a weakening 

of the AMOC. The next best candidates are the yellow green cluster and the orange cluster, respectively.  

3. Early-warning signs 

As mentioned earlier, the difference between the mean temperature in the subpolar gyre, which 

contains the turquoise cluster as a subset, and some global or hemispheric benchmark has already been 
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proposed as a proxy for the AMOC strength. The Northern Hemisphere mean surface temperature was 

used as benchmark by Rahmstorf et al. (2015), the global mean SST by Caesar et al. (2018), and two 

times the global mean SST by Ditlevsen and Ditlevsen (2023). The factor 2 in the last benchmark was 

justified by polar amplification (see Holland and Bitz, 2003). Using several SST-based and salinity-based 

AMOC proxies, Boers (2021) found early-warning signs, such as increasing variance and 

autocorrelation, that the AMOC could be close to a critical transition to a weaker circulation mode. 

Ditlevsen & Ditlevsen (2023) went even further and extrapolated the sample autocorrelation of their 

detrended proxy in order to determine when this critical transition will happen. However, 

Reschenhofer (2023) questioned the reliability of a forecast made in this way because of its critical 

dependence on the adequacy of the underlying statistical model, the plausibility of certain assumptions, 

the quality of the involved approximations, the arbitrary choice of the AMOC proxy, the method of trend 

estimation, the size of the rolling window used for the estimation of the second moments, the 

determination of the start time of ramping, etc. Changing only a single specification was enough to  move 

the predicted time of the AMOC collapse by several decades. Perhaps the most serious point of criticism 

was that the autocorrelation appears to increase erratically rather than steadily which would make 

forecasting based on extrapolation impossible. 

Before we can estimate the variance and the autocorrelation, we must first look at the trend. In 

the first three of its columns, Figure 5 shows a kind of trend decomposition separately for each cluster. 

The HP trend 𝐹𝑡
(1)

 for the cluster means 𝑋𝑡  (with 𝛬 = 2.5 ∙ 109) is the first component, the HP trend 𝐹𝑡
(2)

 

for the deviations 𝐷𝑡 = 𝑋𝑡 − 𝐹𝑡
(1)

 (with 𝛬 = 2.5 ∙ 107) is the second component, and the HP trend 𝐹𝑡
(3)

 

for the deviations 𝑉𝑡 = 𝐷𝑡 − 𝐹𝑡
(2)

 (with 𝛬 = 2.5 ∙ 106) is the third component. However, only the first 

component could possibly be interpreted as a trend in the strict statistical sense. The second 

corresponds rather to an oscillation with large but varying amplitudes and long but varying periods 

(such as the Atlantic Multidecadal Oscillation) and appears as a peak at the second Fourier frequency 

in the periodogram of the detrended series 𝐷𝑡 (see the last column of Figure 5). The third also looks like 

a fairly regular oscillation and appears as a somewhat smaller peak at the 7th Fourier frequency. 
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Figure 5: Clusterwise long-term temperature trends (first column), lower-frequency oscillations 

(second column), higher-frequency oscillations (third column) and first ten periodogram ordinates of 

detrended temperature series (fourth column)  

For a more in-depth analysis, the four most conspicuous clusters (turquoise, yellow green, red, 

and orange) were selected first. Then, for each of these clusters, the HP trend with 𝛬 = 2.5 ∙ 109 was 

obtained from the cluster means and the trend residuals 𝑈𝑡  were calculated. Finally, the statistics 𝑈𝑡
2/𝑛 

and 𝑅𝑡/(𝑛 − 1), where  

   𝑅𝑡 =
𝜋

𝜋−2
𝑠𝑖𝑔𝑛(𝑈𝑡−1𝑈𝑡)

min (|𝑈𝑡−1|,|𝑈𝑡|)

max (|𝑈𝑡−1|,|𝑈𝑡|)
                                                        (2)   

(see Reschenhofer, 2017a, 2017b, 2019), were plotted cumulatively against time. The advantage of this 

approach is that changes in the variance and the first-order autocorrelation can be detected without 

any delay caused by an estimation window. In contrast, windows of width 50 and 70 years were used 

by Ditlevsen and Ditlevsen (2023) and Boers (2021), respectively. The bias of the autocorrelation 

estimator 𝑅𝑡  does not really bother as long as only changes in the autocorrelation are of interest. There 

are no indications of a steadily growing variance or autocorrelation in the second and fourth column of 

Figure 6. An occasional change in the slope of a cumulative plot is certainly not suspicious and can in 

any case be better explained by a structural break.   
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Figure 6: For the turquoise, yellow green, red, and orange cluster as well as for the subpolar gyre, two 

HP trends are shown in the first column, the cumulative squared trend residuals in the second column, 

the normalized cumulative periodogram of the residuals in the third column, and a cumulative upward-

biased measure of autocorrelation in the fourth column. The green lines were obtained by replacing the 

trend residuals by first differences. 

Not surprisingly, choosing a much smaller value of the smoothing parameter 𝛬 (such as 𝛬 = 2.5 ∙

107), which fails to remove the multidecadal oscillations from the trend, yields both a smaller variance 

and a smaller autocorrelation (see Figure 6). Differencing is an alternative way to get rid of the trend. 

However, this transformation will usually turn a positive autocorrelation into a negative one. Moreover, 

we may expect that the autocorrelation of the differenced series vanishes as the autocorrelation of the 

original series approaches 1. The cumulative plots created for the first differences bring no surprises. 

Also, their normalized cumulative periodograms do not exhibit any features of interest. They are largely 

linear apart from a power deficiency near frequency zero which is due to differencing. In contrast, the 

normalized cumulative periodograms of the trend residuals indicate a peak at frequency zero, which 

also was to be expected in view of the presence of long cycles.  

Not much changes when the same analysis is carried out again after subtracting two times the 

global mean SST from the cluster means (see Figure 7). There is still no clear indication of a steady 
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increase in variance or autocorrelation, which is also in line with the results obtained with the time 

series A0 (subpolar gyre) and A2 (AMOC proxy) that were kindly provided by Ditlevsen and Ditlevsen 

(2023) online in a repository (see the last rows of Figures 6 and 7, respectively).    

 

Figure 7: For each AMOC proxy based on the turquoise, yellow green, red, and orange cluster as well as 

on  the subpolar gyre, respectively, two HP trends are shown in the first column, the cumulative squared 

trend residuals in the second column, the normalized cumulative periodogram of the trend residuals in 

the third column, and a cumulative upward-biased measure of autocorrelation in the fourth column. 

The green lines were obtained by replacing the trend residuals by first differences. 

 The contribution of the Atlantic Multidecadal Oscillation (AMO) to the variance and the auto-

correlation is illustrated in Figure 8. The anomalies of the turquoise cluster are shown together with 

two fitted HP trends obtained with 𝛬 = 2.5 ∙ 109 and 𝛬 = 107, respectively. The first represents the 

long-term trend and the second represents the AMO. In the northern part of the cluster (first column of 

Figure 8), the amplitude of the last complete AMO cycle (with a minimum slightly before 1990 and a 

maximum slightly after 2000) is strikingly large. There is a big bunch of values far below the trend line 

followed by another big bunch of values far above the trend line, which provide exactly the right 

conditions for both a high variance and a high autocorrelation in that period. However, it seems that the 

https://www.linguee.de/englisch-deutsch/uebersetzung/kindly.html
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next AMO minimum will be just below the trend line, which does not leave much room for a further 

increase in variance and autocorrelation in the near future. Moreover, the small size of the last bunch 

of values below the trend line and the sharp temperature rise at the very end of the observation period 

(particularly in the southern part of the cluster) suggest that global warming is finally also catching up 

with the subpolar gyre. Rising temperatures have already masked the AMO in more southern clusters 

decades ago (see Figure 4.g,h,i).  

 

Figure 8: Anomalies of the turquoise cluster together with two fitted HP trends  

Figures 6 and 7 only give a rough impression of the change in variance and autocorrelation.  

Focusing on a single grid point brings out more details. For the grid point in the middle of the northern 

part of the turquoise cluster, Figure 9 shows the cumulative squared trend residuals and the cumulative 

squared first differences as well as cumulative measures of autocorrelation both for the trend residuals 
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and the first differences. In addition to the statistic (2), which is based on only two observations,               

Burg’s estimator  

                                                                𝜌̃(𝑘) =
2 ∑ 𝑈𝑠𝑈𝑠−1

𝑡
𝑠=𝑡−𝑘+1

∑ 𝑈𝑡
2𝑡−1

𝑠=𝑡−𝑘 +∑ 𝑈𝑡
2𝑡

𝑡=𝑡−𝑘+1

                                                                   (3) 

 

Figure 9: First row: Anomalies at grid point 16 (a: raw, b: minus two times the global mean SST) together 

with fitted HP trend (𝛬 = 2.5 ∙ 109: red) and moving averages (window size =55*12+1: yellow)  

Second row: Cumulative squared trend residuals (red) and cumulative squared first differences (green)  

Third row: Cumulative measures of autocorrelation for the trend residuals (Reschenhofer, 2017a: red,  

Burg, 1967, 1975 with 𝑘 = 2 and 𝑘 = 3: orange and brown, respectively) and the first differences 

(Reschenhofer, 2017a: green) 

To make it easier to recognize structural breaks, suitable straight lines have been subtracted from the 

cumulative graphs. 
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(Burg, 1967, 1975), which is based on 𝑘 observations, is also included for 𝑘 = 2 and 𝑘 = 3, respectively. 

Compared to the least squares estimator 

                                                              𝜌̂(𝑘) =
∑ 𝑈𝑠𝑈𝑠−1

𝑡
𝑠=𝑡−𝑘+1

∑ 𝑈𝑡
2𝑡−1

𝑠=𝑡−𝑘

 ,                                                               (4) 

Burg’s estimator has the advantage that it does not take values outside the open interval (1,1) with positive 

probability. Although the individual statistics, which are based on a very small number of observations, are 

extremely volatile, any noticeable change in the slope of the cumulative graph is a clear indication of a 

structural break. Overall, there appear to be two breaks in the variance, one around 1950 and the second around 

1980, and at least one break in the autocorrelation around 1960. There are no indications of a steadily 

growing variance or autocorrelation regardless of whether the series of anomalies is used or the AMOC 

proxy, which is obtained by subtracting two times the global mean SST.  

4. Discussion 

Unlike other researchers, Caesar et al. (2018) incorporated seasonal aspects into the definition of 

their AMOC proxy. In order not to overlook anything important, it is therefore advisable to check 

whether there are any significant differences between the various calendar months. Figure 10 shows 

the HP trends (𝛬 = 2.5 ∙ 104) of the cluster means separately for each calendar month. The only really 

noticeable pattern occurs in the first (purple) cluster during the “winter months” (from December to 

March). In the more interesting third (turquoise) cluster, there has recently been a slight warming in 

the “summer months” (from July to October). Using only the period from November to May like Caesar 

et al. (2018) might therefore indeed emphasize the different nature of this cluster.  



The International Journal of Applied Economics and Econometrics 
Vol. 1 No 1 (June 2024); pp 1-17 
 

15 
 

 

Figure 10: HP trends (𝛬 = 2.5 ∙ 104) of the cluster means for each calendar month (January: purple, 

February: blue, March: turquoise, April: green, May: yellow green, June: red, July: pink, August: yellow, 

September: orange, October: brown, November: gray, December: black) 

Defining an AMOC proxy as the difference of two temperature series is, of course, not yet a 

bivariate analysis. For the sake of completeness, the results of a cross spectral analysis for the clusters 

3 (turquoise), 5 (yellow green), 7 (red), 8 (orange) are therefore presented in Figure 11 (for a univariate 

spectral analysis see, e.g., Mangat and Reschenhofer, 2020). The squared coherencies displayed below 

the main diagonal show no conspicuous features, possibly apart from a peak near frequency zero in the 

case of the cluster combination 3 & 5. To avoid artificial jumps (e.g, from 𝜋 to −𝜋) caused by the non-

uniqueness of the polar coordinates and thereby improve the interpretability of the estimated phase 

spectra displayed above the main diagonal, two additional versions of the phase spectra obtained by 

adding and subtracting 2𝜋 have also been plotted. However, it seems that none of the four series of 

cluster means is leading or lagging because the phase spectra are pretty flat, at least in the frequency 

ranges with higher cross correlation.  
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Figure 11: Cross spectral analysis (width of modified Daniell smoother = 25) of the detrended (𝛬 = 2.5 ∙

109 ) cluster means (3: turquoise, 5: yellow green, 7: red, 8: orange)     

Main diagonal: periodograms (3, 5, 7, 8) 

Above: phase spectra (3 & 5, 3 & 7, 3 & 8, 5 & 7, 5 & 8, 7 & 8), below: squared coherencies  

Also, the mere subtraction of a global or hemispheric benchmark from a series of anomalies adds 

no real value when it comes to the monitoring of early-warning signs for a weakening AMOC. Clearly, 

the short-term fluctuations of the benchmark are not helpful in this respect. The same is true for the 

long-term trend of the benchmark, which has to be removed anyway when the variance and 

autocorrelation are calculated locally. It is therefore not surprising that the first column of Figure 9 

(without subtraction) looks very much like the second column (with subtraction). What remains is the 

observation that a certain region in the North Atlantic appears to defy global warming, but only with 

the imposition of increasingly severe regional and seasonal restrictions. Once the rise in temperature 
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can be observed everywhere and the AMO is masked by the upward trend, there is little scope for a 

further increase in variance and autocorrelation, which renders these early-warning signs obsolete. The 

sobering conclusion is that it is currently impossible to make any reliable predictions with the available 

data and methods.  
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